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• 1.I INTRODUCTION

1.1 Summary

Continuous fiber composite laminates are known to undergo a

substantial amount of complex load-induced damage which can adversely

affect component performance [1]. Therefore, it is desirable to develop

new models capable of accounting for the effect of damage on materials

properties.

This report documents research completed during the first year of

a three year effort under AFOSR grant no. AFOSR-84-O067 and originally.. -

detailed under Texas A&M Research Foundation proposal no. RF-84-34 and

dated October 1983. The objective of this research is to develop an

accurate damage model for predicting strength and stiffness of

continuous fiber composite media subjected to fatigue or monotonic

loading and to verify this model with experimental results obtained from

composite specimens of selected geometry and makeup to be described

herein.

* 1.2 Statement of Work

The following is a brief summary of work to be performed under the

present grant:

1) develop constitutive equations relating stresses to strains 
and -

damage internal state variables (ISV) which may be used in a stress

gradient field;

2) develop ISV growth laws as a function of load history for

matrix cracking, interlaminar fracture, etc.;

.' ., J *
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3) develop finite element algorithms capable of evaluating ply

Sproperties in damaged components.

4) perform experiments on components with selected stacking

sequences in order to verify the model.

2. RESEARCH COMPLETED TO DATE

2.I Summary of Completed Research.

a The following research has been completed during the first year:

1 ) the general damage-dependent stress-strain relations have been

revised and completed;

[ 2) an ISV growth law has been constructed for matrix cracking;

3) laminate equations have been constructed for matrix cracking;

4) the relation between the damage ISV and surface area of cracks

has been established analytically;

5) all finite element programs are complete; and

*" 6) the model has been compared to both experimental and finite

element results for glass/epoxy laminates.

K. In addition, the following research is partially completed;

1) experimental characterization of ply and laminate properties in

a variety of graphite/epoxy AS4/3502 laminates;

2) non-destructive evaluation of damage in various graphite/epoxy

laminates; and

3) correlation of model to experiment for degraded stiffness due

to damage in graphite/epoxy composites.

The following sections further detail the results summarized

above.

2
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2.2 Development of the General Model

Thermodynamic and symmetry constraints have been utilized to
* * ., .

construct stress-strain relations of the form:

R (k

where a is the stress tensor, cL is the strain tensor, is the

d:ii
damage dependent residual stress, -Lklis the damage dependent thermal

strain, and C' is the damage dependent modulus tensor, given by

C' C + M c

. ijkl Lijkl ijklmn Lmn (2)

Lijkl

where C and M are material constants and are second-order
L. ijklmn O
ijk mn

* tensor-valued damage dependent internal state variables.

A kinematically based description of the internal state variable has

been constructed ofI tha form u
i 

nj dS-LJ Nt dS (1

C C , d

". iS" 2 (3

where u1 are the components of the crack-opening displacement, nc are

the components of the crack unit normal, and S is the total surface
2°"| 

-  
- .,.- .

area of cracks in a given volume element, VL, as shown in Fig. 1.

An ISV growth law has been constructed for matrix cracking, as

given by

mm n if C < C < , and

K ni n nmx 4

0 if = < C or C >C

. min max,
22

where the parameters are as described in Appendix 6.2.
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Fig. 1. A Body with Damage (a) General Body,
-(b) Local Element.
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The results outlined in this section are described in detail in

Appendix 6.1.

2.3 Application to Matrix Cracking

The model has been applied to composite laminates with a single
L

damage mode consisting of matrix cracks, as shown in Fig. 2. This was

accomplished by imposing symmetry constraints, reducing to single index

notation, and constructing laminate equations. It was found that for

matrix cracks which lay in a plane normal to the fiber (xI ) direction,

1 ,r 05 ) 0.(5 )

= 0 0 0

rL J

in local ply coordinates, where a is the damage tensor for a typicalL..
ply due to matrix cracking.

* An examination of the dependence of free energy, uL on damage led

to the conclusion that the magnitude of damage I al depends only on the

surface area of cracks S Furthermore, since the free energy depends
2*

explicitly on damage, it follows that the relation between aLl and S2

could be determined from

GL (S 2 ) ds

= S2 (o) g'(S) (6)

.,eL OcVcf
c c2

where G is the energy release rate.
L

The energy release rate was then calculated as a function of S2 by

utilizing a finite element simulation of a [0,90] s laminate.

55
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Using the procedure briefly described above, it is possible to

I ~ relate all stiffness components to cracked surface area for composite

laminates with matrix cracks. It is emphasized that the model predicts

all stiffness components for any layup using material property input

which is stacking sequence independent.

Figs. 3 & ~4 show predictions of the model for axial and other

stiffness components of [0,90 31s  E-glass epoxy laminates. Fig. 3

indicates that the model predicts somewhat higher stiffness than

experimental results. Although experimental results are not available

C. for other components, Fig. 4 shows excellent agreement between FEM

*.! results and the model for vx Details of the results outlined in this

-- section are contained in Appendix 6.2.

The following section will detail attempts to obtain more useful

!ii experimental results.

"'" 2.14 Experimental Research Activities

The purpose of the experimental research is to study and document

the progression of damage in a systematic manner that will fully support

the development of the constitutive model. The authors have determined

via an extensive literature survey, partially documented in reference 1,

that the experimental data necessary to characterize and verify the

model does not exist in the current literature. The comprehensive

experimental data base will provide two fundamental types of essential

information which are not currently available in the open literature.

First, the progression-of-damage study will establish the

phenomenological characterization of the internal state variables and

will provide the essential ingredients for formulating the associated

7
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damage growth laws. Second, the experimental data base will provide

direct measurements of the effective (damage-degraded) moduli. These

direct measurements will be compared to the constitutive model %

predictions. This is an essential task for both the development and

"fine-tuning" of the model as well as establishing the validity and

accuracy of the model. The following sections describe the results of

the three primary tasks that have been completed to date. The first

task was the development of a materials characterization laboratory.

The second task was the formulation of a test matrix, laminate panel

preparation and specimen coupon fabrication. Finally, the study of

[ matrix crack damage has commenced.

2.4.1 Materials Characterization Laboratory

The research objectives of this grant necessitated the

establishement of a materials characterization laboratory. The effort

was supported jointly by Texas A&M University and by an equipment grant

from AFOSR. The established laboratory meets the dual requirements of

* measuring the mechanical properties of materials and nondestructively

studying load-induced microstructural damage. The primary laboratory

facilities consist of a 20-kip Instron testing machine for monotonic

loading conditions and a 110-kip MTS 880 testing system (partially

funded by AFOSR Equipment Grant-84-0257) for both monotonic and cyclic

loading conditions. Support equipment include computer controlled data

- acquisition and data reduction systems, as well as redundant real-time

analog signal recording systems. (The MTS 880 testing system also

includes an environmental chamber for cryogenic or elevated temperature

testing in a controlled humidity environment.) The primary

nondestructive evaluation (NDE) facility is a portable x-ray radiography

10
0 .



system for in-situ x-ray examinations. A second NDE facility is an

I ultrasonic spectroscopy laboratory. This technology is being developed

by Dr. V.K. Kinra as part of a "sister" AFOSR Grant. Additional NDE

facilities, already in place at Texas A&M include edge-replication,

ultrasonic C-scan, optical microscopes and a scanning electron

microscope. All of the above equipment is now in place and functional

along with fully trained personnel.

2.4.2 EXPERIMENTAL TEST PROGRAM

Laminate panels are being prepared from pre-impregnated

graphite/epoxy tape, AS4/3502, by the Mechanics and Materials Laboratory

at Texas A&M University. The curing process was developed from the

procedure recommended by the pre-preg tape vendor. Each 12" x 12" panel

yields ten 1" x 11" tensile test coupons. The matrix of test coupons is

given in Table 1. The anticipated specimen requirements necessitated

the fabrication of 2 panels for each laminate stacking sequence. While

panel fabrication is still an ongoing activity, all Type I and II ' '

panels have been fabricated. The cured materials are being stored in a

" . dessicant chamber.

The number of specimens in each test category listed in Table 1

were selected primarily to insure adequate replicate test data. The

specified load histories for the four fatigue tests are considered to be

tentative. The exact cyclic load histories will be selected at a later

date. For this reason, it is desirable to have a sufficient number of

specimens available should the research warrant a redirection. it

.. should be noted that there are two spare specimens in addition to the

eighteen specimens listed in the test matrix for each laminate. The

% -7



TABLE 1 TEST MATRIX

A. LAMINA MATERIAL CHARACTERIZATION 05

1 ~5 2S

B. LAMINATE CHARACTERIZATION & DAMAGE GROWTH LAWS

QUASI - STATIC FATIGUE

LAMINATE LAMINATE MONOTONIC R=10 RhIo COMPR
*TYPE CHARACTERIZATION DAMAGE GRW LAWS HIGH LOW

I. [0o/90/0] 2 4 3 3 3 3
S

*[90/0]1 2 4 3 3 3 3

[0/901 S 2 4 3 3 3 3

[ 0/ 9 1  2 4 3 3 3 3

[0/012 4 3 3 3 3

*[0/90]1 2 4 3 3 33
3 S

[0/90415 2 4 3 3 3 3

[090/4/] 2 4 3 3 33

11II. [0/45/0] 5 2 4 3 3 3 3
S

[9/45/0]-5J 2 4 3 3 3 3

III. [0O/45] 2 43 3 33

I.[30±3021 2 4 3 3 3 3

12
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k total number of specimens (20 per laminate) will allow for some .s.

destructive examinations of the microstructural damage without

=' diminishing the overall data base.

The laminates listed in Table 1 were selected for specific

reasons. The Type I laminates were selected to study matrix cracks.

The primary mode of microstructural damage in cross-ply laminates is

matrix cracks in the 900 plies [2,3] In addition, the free edge

- interlaminar stresses are minimal and should not affect the

Smicrostructural damage that develops prior to fracture. Therefore, the

cross-ply laminates are ideal for isolating the single damage mode of

* matrix cracking. The specific cross-ply stacking sequences were

selected so that both the thicknesses of the 900 ply layers and the 00

ply constraint layers are varied.

b iThe quasi-isotropic laminates, Type II, were selected because of

their practical significance and in order to study adjacent ply matrix

crack interaction. The microstructural damage should be free of edge .- %

effects in both stacking sequences because they both have compressive -

*" interlaminar normal stresses at the free edge [4]. Also, the + 450 and

-450 plies are adjacent in one laminate and separated in the other.

This will provide information concerning the effect of adjacent ply

constraint on matrix cracking and crack interaction. Finally, these two

laminates will be useful for the study of localized internal

- delaminations which accompany the intersection of adjacent ply matrix

- -cracks.

The Type III laminates were chosen to isolate and study matrix

crack damage in (+) and (-) plies in the absence of matrix cracks in

900 plies. The two laminate stacking sequences are consistent with the

13
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Type II laminates, excluding the 900 plies, and both have minimal ob

interlaminar normal stress at the straight free edges.:-
The Type IV laminates were selected to study the influence of free " -

edge effects [2,5]. The failure of the [302/-302]s laminate is

I. dominated by the interlaminar shear stress, T . Free edge delaminations

open at the +301-30 interface. On the other hand, delaminations do not

form at the free edges of the [(±30)2]s laminate. The significance of

free edge effects is illustrated by the fact that the strength of the

[(±30)2]s laminate is much higher than that of the [302/-302]s laminate.

It is anticipated that free edge delaminatlons can only be addressed as

a boundary value problem since the delamination surfaces form external -

boundaries. However, this damage mode is included herein because it

represents a realistic damage mode for many practical structural

geometries.

%. 2.4.3 Experimental Results

The first phase of the research has the objective of establishing

the internal state variable and the associated damage growth law for the

isolated damage mode of matrix cracks. Type I cross-ply laminates have

been selected for this purpose. This initial phase of experimental

research is being confined to the quasi-static, monotonic loading

condition. The general expeimental procedure is briefly outlined below:

1. Establish the basic lamina properties for input to all analyses.

2. Determine the undamaged moduli and the load-to-failure versus

Jisplacement characteristics of the laminate.

, 3. Using the results of 2 as a guide, study and document the

progression of damage as follows:

14
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" (a) At appropriate load increments, perform nondestructive

examinations.

()Determine the tangent mdl an sentmoduli. Record all

extensometer versus load data.

(c) At a few specially selected damage states, 
perform destructive

examinations.

The basic lamina properties are listed in Table 2. In each case,

- the mean value and standard deviation are listed. From the limited

comparisons available, it can be seen that the recently measured lamina

properties are in good agreement with the specified values supplied by -

r ;the pre-preg tape vendor.

The experimental investigation of matrix cracks in the 900 plies

of cross-ply laminates has commenced. A typical progression-of-damage

pattern ii the [0/90 ] laminate is shown in Fig. 5. Also, Fig. 6 shows

an associated x-ray radiograph of the apparent saturation damage state -

in the [0/90 ] laminate. The edge replicas shown in Fig. 5 were taken

3s

of the same specimen at increasing applied stress levels. The

increasing number of cracks and the apparent saturation spacing at 67.1

ksi are consistent with well known results for transverse matrix

-. " cracking. It is obvious from Fig. 5 that all of the matrix cracks are

not straight cracks through the thickness of the 900 layer. The initial

cracks that form are straight. However, as cracks begins to fill in the

spaces between the initial cracks, some cracks have distinctive

parabolic profiles. This can clearly be seen in the edge replica taken

at 56.8 ksi. The curved cracks have greater surface area than straight

cracks and unit normals that are not aligned with the x -axis directionS 

1

as is the case with straight cracks. Therefore, the presence of the

15
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TABLE 2 MEASURED LAM4INA PROPERTIES

MEAN STANDARD VENDOR
*VALUE DEVIATION SUPPLIED

-- PROPERTIES

E 21.5x106 psi 2.0% 21.5x106 psi

11 i1E 221.39x10 6 psi 2.1%

6G0.694x10 psi -

V1 2  0.31 3.7% -

Ftul 326.0 ksi 3.5% 310.0 ksi -,-

C u0.0144 4.6%

Notes: 1. F =tensile strength of 00 unidirectional laminate. ;,zJt.:
tul

2. e tensile failure strain of 00 unidirectional laminate.

9.u

-:%



J6.

j, I

C 1P

3 e

I I1 6



L .* -.' 
; -

Fig. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ J 6~ X- aigaho teAprn auato rc atr

37' Laiae

17-



curved cracks may have a significant influence on the formulation of the

internal state variable for matrix cracking. The initial indication is

that the profile of the curved cracks is greatly influenced by the

thickness of the 900 layer and to some extent by the thickness of the

adjacent 00 plies. This is probably related to the previously

identified shear lag effect on matrix crack formation. This is

currently the focus of the experimental research effort.

18"6
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2.5 Conclusion ' "' "

A general model has been developed for predicting the relation

between stresses and strains in composites with load-induced damage.

This model is capable of predicting structural component response in a

stress gradient field. Although the general form of the model is fairly

complex, it has been shown herein that for the case of matrix cracking

the model is only slightly more cumbersome that standard laminate

analysis. Furthermore, the model has been compared with some success to

experimental results for [0,903] E-glass epoxy laminates.
3,

Current efforts deal with verification of the model for AS4/3502

graphite-epoxy laminates, with primary emphasis on matrix cracking.

Since necessary experimental results are not available in the

literature, a comprehensive experimental program has been initiated

under the current grant. Initial results indicate that the model is

accurate for graphite-epoxy systems.

'" D~ctivities in the second year of research will concentrate on ,--f''

three important issues: 1) effect of matrix cracking on reduction of all

stiffness components as a function of stacking sequence in cross-ply

laminates; 2) refinement of the ISV growth law for matrix cracking; and

3) initial studies of the effects of interlaminar delamination on

stiffness loss.

The authors are quite encouraged by the current results and

believe that they provide ample justification for continuing the

reseirch effort.

19
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4. PROFESSIONAL PERSONNEL INFORMATION
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1. Dr. D.H. Allen (Co-principal Investigator)- overall program

coordination; development of stiffness relationships; construction of ."/-..:"

ISV growth laws; mechanical testing.

2. Dr. W.E. Haisler (Outgoing Co-principal Investigator)- finite

element modelling.

3. Dr. C.E. Harris (Incoming Co-Principal Investigator)- overall

experimental coordination; mechanical testing; nondestructive

evaluation; stiffness modelling.

22



V. 0. '

4 .2 Add it io na l S ta ff

1. Mr. S.E. Groves (Lecturer, Research Assistant, and Ph.D. Candidate)-

ISV growth laws; laminate analysis; finite element modelling; mechanical

testing.

2. Mr. R.G. Norvell (Research Assistant and M.S. Candidate)- mechanical

* testing; nondestructive evaluation.

3. Mr. I. Georgiou (Research Assistant and M.S. Candidate)- mechanical

testing; nondestructive evaluation; ISV growth laws.

4. Mr. B. Harbert (Lab Technician)- experimental lab support.

5. Mr. C. Fredericksen (Lab Technician)- experimental lab support.

6. Mrs. T. Marquez (Secretary)- secretarial support. . .

I

p.;

I 

V'-- -

23

S 

. 4 --.,.- 

.%--.



].' - r j. -w ', *'.b ~- ;-. g' *- -" - -
. 
- . - .7. * ''% q - . - *' -% .'-' , " .> - . - - -_- _ - . - '- N."- K W t-JL-- ra Y.L U.- f-

N"--

5. INTERACTIONS

5.1 Papers Presented

5.1.1 Presented Under This Grant

1. D.H. Allen, "A Damage Model for Continuous Fiber Composites,"

Tenth Annual Composites Review, Dayton, October, 1984.

2. D.H. Allen, "A Damage Model for Continuous Fiber Composites,"

Society of Engineering Science 21st Annual Meeting, Blacksburg, VA,

Si October, 1984.

5.1.2 Related Research Presentations

1. D.H. Allen, "On the Use of Internal State Variables in °-

Thermoviscoplastic Constitutive Equations," 2nd Symposium on Nonlinear

Constitutive Relations for High Temperature Applications, Clevelend,

June, 1984.

2. W.E. Haisler, "Numerical Considerations in the Development and

Implementation of Constitutive Models," 2nd Symposium on Nonlinear

Constitutive Relations for High Temperature Applications, Cleveland,

- June, 1984.

3. C.E. Harris, "Comparison of the Fracture Behavior of Thick Laminated
0

Composites Utilizing the Compact Tension, Three-Point Bend and Center-

. "Cracked Tension Specimens," presented at the Seventeenth Symposium on

- -Fracture Mechanics sponsored by ASTM, Albany, NY, August 1984.

*1 24 *

. . . . .* . . . .... . . . . . .. .

° -- •



4 C.E. Harris, "A Damage Tolerant Design Parameter for Graphite/Epoxy .0

Laminated Composites," presented at the 21st Annual Meeting of the

*J ,wSociety of Engineering Science, Blacksburg, VA, October 15-17, 1984.

5. C.E. Harris, "The Fracture of Thick Graphite/Epoxy Laminates with

Part-Through Surface Flaws," presented at the Symposium on Composite

Materials: Fatigue and Fracture, Dallas, TX, October 1984.

-. .

6. C.E. Harris, "Unique Aspects of Conducting Strength Tests of Thick

' Composites" invited paper presented at the fall meeting of the Society

for Experimental Mechanics, Milwaukee, WI., November 1984..

5.1.3 To Be Presented

.1 . D.H. Allen, "Modelling of Stiffness Reduction Due to Matrix Cracks

in Graphite/Epoxy Laminates," Society of Engineering Science 22nd Annual

Meeting, State College, PA, October, 1985.

2. C.E. Harris, "Experimental/Analytical Correlation of Damage

Accumulation in Laminated Composites," Society of Engineering Science

• 1 22nd Annual Meeting, State College, PA, October, 1985.

5.2 Research Related Travel and Consultative Functions

I. D.H. Allen visited Hercules Corp., Magna, UT, to discuss composite

•.. materials, April 1984.

25



I.°.-

2. D.H. Allen visited Martin-Marietta, Denver, to discuss composites in

- large space structures and to see the PACOSS experiment, April 1984.

3. D.H. Allen and W.E. Haisler attended the 2nd AFOSR Forum on Large

* Space Structures, Washington, D.C., June 1984.

4. D.H. Allen and W.E. Haisler attended the 2nd Symposium on Nonlinear

Constitutive Equations for Elevated Temperature Applications, Cleveland,

June 1984.

5. D.H. Allen attended NASA Shuttle Launch 41-C to see the launch of

LDEF, which contains one of Dr. Allen's experiments, April 1984.

A 6. W.E. Haisler attended the AFFDL Vibration Damping Conference, Long

Beach, CA, April 1984.

7. W.E. Haisler attended the AIAA SDM Conference, Palm Springs, CA, May

1984.

8. D.H. Allen consulted with engineers at the General Electric Aircraft

Engine Business Group on viscoplasticity in metals at elevated

temperature, Cincinnati, April and November, 1984.

9. D.H. Allen visited Drs. G. Sendeckyj and D. Paul at AFML to discuss

composites, Dayton, November, 1984.

26
-.m -.



* 10. D.H. Allen, -and G.E. Harris attended the ASTM Conference in Dallas,

November, 19814.

I 27

'- 7



-. ~. ~ ~ ~ .'. .' . ~ ~ ~ i~V .)~3 'XX~) ~3'~1~ ~

'4 J

1.
* I...
2 U...

ill
*1~*. 2

A
- I

J

I-.
:1 A

-~ M 4

A
6. APPENDIX I

INTERIM TECHNICAL REPORTS

I.
I

I -~

I

28
6

i *

........................... ~ ...............



~- ".

'II L

-- :--

., "S. *

I
N

1 b-i-

I.

APPENDIX 6.1

U

-

:j f '2.~. .%

-I.

I
t

29



I, Mechanics and Materials Center
TEXAS A&M UNIVERSITY

College Station, Texas

A DAMAGE MODEL FOR CONTINUGjUS FIBER COMPOSITES

PART 1: Theoretical Development

by

I - D. H. Allen

S. E. Groves

Aerospace Engineering Department

and

R. A. SchaperyA

ii Civil and Aerospace Engineering Departments

Texas A&M University

College Station, Texas 77843

MM-5023-84-17 August 1984
Revised February 1985



ECRT CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I. RL POHT 'i L HI T Y' C LA I F (-A I WN lb. HESTRICTIVIL MARKINCS

Unclassified ______________________fl 2. SEC,..'J' Y CLASSIFICATION AUTHOR. TY 3. O,STRIBUTIONIAVAI LABILITY OF REPORT

2b, DECLASSIF ICATION,OOWNGRAOINc, SCHEDULE Unlimited

4 PEFIRMING ORGANIZATION REPORT NUMBER() 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME CF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

- Aerospace Engineering Dept. Air Force Office of Scientific Research t
6 c. ADDRESS ICli. State and Iip Cude) 7b. ADDRESS (City, Stale and ZIP Code)

Texas A&M University Boiling AFBL

College Station, TX 77843 Washington, D.C. 20332 b_4

8. NAME CF FUNDING.SPONSORING SbB. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION If applicable)

________________________ IGrant No. AFOSR-84-0067
Bc ADDRESS C_'. State ti 1P Cutlet 10. SOURCE OF FUNDING'NOS.

IPROGRAM PROJECT TASK WORK UNIT'IELEMENT NO. NO. NO. NO.

I1I T I TLE fi'icwde 'wcurity Classification)

A Damage Model For Continuous Fiber Compositqs: Part I _________________

12. PERSONAL AUTH-OR(S)

D.H. Allen, S.E. Groves. R.A. Schapery
13. TYPE OF REPORT 13b. TIME COVERED 14 AEO EOTlr.M. a) 15. PAGE COUNT

InterimFROM N TO ____ FEB 1985 -

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverseE if necessary and identify by block number)

-FIELD GROUP sue. GR._ composites failure
I Idamage internal state variables
I Ilaminate analysis plasticity

-19. ABSTRACT Contlnue on reverse If necesary and identify by block num'ber)

A continuum mechanics approach is utilized herein to develop a model for predicting

I the thermomechanical constitution of continuous fiber composites subjected to both mono-
tonic and cyclic fatigue loading. In this model the damage is characterized by a set
of second order tensor valued internal state variables representing locally averageu:
measures of specific damage states such as matrix cracks, fiber-matrix debonding,

* interlaminar cracking, or any other damage state. Globa-iy averaged history dependent

constitutive equations are posed utilizing constraints imposed from thermodynamics with
iiinternal state variables as well as fracture mechanics.

* S In Part I the thermodynamics with internal state variables is constructed and it is
shown that suitable definitions of the locally averaged field variables will lead to

* equivalent thermodynamic constraints on a scale assumed to be large compared to the scale
of the damage. Based on this result the Helmholtz free energy is then expanded in a

20 DISTRIBt..TiON AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATIONI
S UNCLASSIFIEDUNLIMITED :XSAME AS RPT ZOTIC USERS El Unclassified

22a NAME CF RESPONSIBLE IJLL\,IDUAL 22b TELEPHONE NUMBER 22c O FF ICE SYMBOL

Maj. . Glasgow(2)76

* DD ~FORM 1473, 83 APR EDITION F1 A73 IS OBSOLETE Ucasfe
S ECURITY CLA S11' ,ATION OP THIS PA~u.P"



A DAMAGE MODEL FOR CONTINUOUS FIBER COMPOSITES

PART I: Theoretical Development

by

D.H. Allen.. ~ ~.. .,-I

S.E. Groves

Aerospace Engineering Department

and 771
R.A. Schapery -.

Civil and Aerospace Engineering Departments

Texas A&M University !2
College Station, Texas 77843

August 1985
MM-5023-84-17 Revised February 1985

)71.-. :~~I. -...:.:



A DAMAGE MODEL FOR CONTINUOUS FIBER COMPOSITES

PART I: Theoretical Development "

Wby f:~
D.H. Allen

S.E. Groves 'K

R.A. Schapery ij"

ABSTRACT:-

A continuum mechanics approach is utilized herein to develop aL

model for predicting the thermomechanical constitution of continuous

fiber composites subjected to both monotonic and cyclic fatigue loading.

In this model the damage is characterized by a set of second order -

tensor valued internal state variables representing locally averaged

measures of specific damage states such as matrix cracks, fiber-matrix

debonding, interlaminar cracking, or any other damage state. Globally

averaged history dependent constitutive equations are posed utilizing

constraints imposed from thermodynamics with internal state variables as

well as fracture mechanics. .

In Part I the thermodynamics with internal state variables is

* constructed and it is shown that suitable definitions of the locally

averaged field variables will lead to equivalent thermodynamic

• .constraints on a scale assumed to be large compared to the scale of the

damage. Based on this result the Helmholtz free energy is then expanded

in a Taylor series expansion in terms of strain, temperature, and damage

. to obtain the stress-strain relation for composites with internal state



variables representing damage. Finally, an internal state variable

growth law is proposed for matrix cracking.

In Part II the resulting three dimensional tensor equations are

simplified using material symmetry constraints and are written in

engineering notation. The resulting constitutive model is then cast

into laminate equations and an example problem is solved.

].It is concluded that although the model requires further ,?.]'

development and extensive experimental verificatiion it may be a useful

tool in characterizing the thermomechanical constitutive behavior of

continuous fiber composites with damage.

INTRODUCTION

SUltimate failure of continuous fiber composite structural

components is preceded by a sequence of microstructural and

macrostructural events such as microvoid growth, matrix cracking, fiber-

matrix debonding, interlaminar cracking, edge delamination, and fiber

fracture which are all loosely termed damage. Considerable experimental

research has been performed in the last decade detailing the growth of

damage under both monotonic and cyclic loading conditions [1-7]. The

significance of this damage lies in the fact that numcoous global

material properties such as stiffness and residual strength may be

substantially altered during the life of the component, as shown in Fig.

1 18]. It has been found that the first phase of fatigue is typified by

development of a characteristic damage state (CDS) [9] which is composed

primarily of matrix cracking in off-axis plies. During the second

phase of damage development the CDS contributes to fiber-matrix

2..0
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Fig. 1. Damage Accumulation in a Continuous Fiber

r Composite Subjected to Monotonic Load or
Strain Controlled Cyclic Fatigue (from ref. 8).
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• • debonding, delamination, and fiber microbuckling. These phenomena in '.

turn contribute to a tertiary damage phase in which edge delamination , .

and fiber fracture lead to ultimate failure of the specimen [6].

-" Analytical modeling of the damage state appears to be only

recently studied. The earliest attempts fall under the general heading

of laminate analysis, in which various empirical schemes have been

developed to discount ply properties in the presence of damage [10-121.

Axial stiffness reduction and stress distribution in the CDS have also

been predicted using a one-dimensional shear lag concept [5]. Several

researchers have obtained solutions for effective modali of elastic .
i' jX-.- .

bodies with distributed cracks [13-17]. In the case where cracks are

S--either randomly distributed or oriented the effect of total crack

surface area is found to cause a first order effect on the stiffness

[13-16].

Fracture based concepts have recently been utilized to model

damage development [18-21]. Although the first of these studies [18]

U contains a general theory which may be applied to fibrous composites, it

has so far only been utilized for quasi-isotropic random particulate

. .composites such as solid rocket propellant, [9] and as such has not been

applied to continuous fiber composites. The theory in the latter two

[20,21] has not been utilized to predict reduction of off-axis stiffness

components. Kachanov's modulus reduction technique [22] has also been

utilized for fibrous composites [23] and although promising results were

obtained, the model was constructed in uniaxial form only.

A complex interactive experiment and analysis model (called a

":mechanistic model) has been proposed [8]. The approach used therein is

fundamentally quite different from that developed in this paper.

,I 4
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-. Furthermore, the mechanistic model requires numerous experimental

results for each geometric layup in order to determine which damage mode

predominates.

Finally, extended forms of Miner's rule [24] have been proposed

[18,25]. However, they are based on simplified microphysical models at

this time.

The concept of damage as an internal state variable [26] has been

previously utilized in continuum mechanics/thermodynamics based theories

for crystalline and/or brittle materials [27-34], as well as for

nonlinear viscoelastic materials [18]. A study has been made of the

" effect of vector-valued damage parameters on various compliance terms

[35], and this methodology is currently undergoing further development

[36, 37].

The research reviewed above indicates that although important

progress has been made in characterizing damage in fibrous composites,

substantial and continued research is warranted before several issues

can be resolved.

In this paper an attempt will be made to assemble many of the

concepts embodied in the research efforts mentioned briefly above and to

utilize these concepts to develop a model for damage in continuous fiber

I composites which is rigorously based in continuum

mechanics/thermodynamics and is generic with regard to material type,

load spectrum, and specimen geometry.

5
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CHARACTERIZATION OF DAMAGE AS A

SET OF INTERNAL STATE VARIABLES

* ..,

-.*Consider an initially unloaded and undamaged continuous fiber

-wcomposite structural component as shown in Fig. 2a, where undamaged is

defined here to mean that the body may be considered to be continuous

(without voids) on a scale several orders of magnitude smaller than the

smallest external dimension of the component. Although voids may exist

*in the initial state, their total surface area is assumed to be small

compared to the external surface area of the component. Under this

assumption the body is assumed to be simply connected and we call the

initial bounding surface the external boundary. Although the component

is undamaged, there may exist local heterogeneity due to such causes as

processing inhomogeneities and second phase materials including fibers

and matrix tougheners. In addition, the body may be subjected to some

- residual stress state due to prior loading, cool down, etc.

* Now suppose that the component is subjected to some traction or

deformation history, as shown in Fig. 2b. The specimen will undergo a

K thermodynamic process which will in general be in some measure

* irreversible. This irreversibility is introduced by the occurrence of

such phenomena as material inelasticity (even in the absence of damage)

fracture (both micro- and macroscale), friction (due to rubbing of

• fractured surfaces), and chemical change. While all of these phenomena

can and do commonly occur in continuous fiber composites, in the present

research it will be assumed that fracture is the only irreversible

* phenomenon of significance. Thus, all fracture events will be termed

damage. Due to these fracture events, the body will necessarily become

6
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it (a)

Fig. 2. Fibrous Composite Structural Component in

a) Undamaged State, and

b) With Applied Tractions.
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multiply connected, and all newly created surfaces not intersecting the

external boundary will be termed internal boundaries. Because of the

above assumptions the model will be limited to polymeric matrix

composites at temperatures well below the glass transition temperature

- Tg. where viscoelasticity in matrix materials is small. Metal matrix

composites will be excluded due to complex post-yield behavior of the

matrix.

While fracture classically involves changes in the boundary L

conditions governing a complex field problem, it is hypothesized that

one may neglect boundary condition changes caused by creation and

alteration of both internal and external surfaces created during

fracture as long as the resulting damage in the specimen is

statistically homogeneous on a scale which is small compared to the

scale of the body of interest. This implies that the total newly

created surface area (which includes Internal surfaces) may be of the

same order of magnitude as the original external surface area. Under

the condition of small scale statistical homogeneity all continuum based

conservation laws are assumed to be valid on a global scale in the sense

that all changes in the continuum problem resulting from internal damage

are reflected only through alterations in constitutive behavior.

Typical microstructural events which qualify as damage are therefore

matrix cracking in lamina, fiber/matrix debonding, and localized

interlaminar delamination. Large scale changes in the external surface

such as edge delaminations, however, are treated as boundary effects

which must be reflected in conservation laws via changes in the external

boundary conditions rather than in constitutive equations [39].

8
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Although the damage process actually involves the conversion of

strain energy to surface energy, the fact that the damage is reflected Pt._

in the local constitutive equations requires that it be treated as a set ,."-

of energy dissipative local state variables which are not discernible on

the external boundary. Therefore, since the damage can be determined

only through a precise knowledge of the entire history of observable

inputs, it is characterized as a set of internal state variables. This

concept will be further developed in the next section. 1.

THERMODYNAMICS OF MEDIA

1' WITH DAMAGE

We now proceed to construct a concise model of the continuum with

damage. To do this, consider once again the structural component,

denoted B in Fig. 3a. The body B is assumed to be of the scale of some "'*

appropriate boundary value problem of interest. Now consider some local

element labelled L and with external surfaces S arbitrarily chosen

normal to a set of Cartesian coordinate axes (xl, x2 , x3 ), as shown in

Fig. 3b. The element L is extracted from B and the newly created

surfaces are subjected to appropriate boundary conditions so that the

element response is identical to that when it is in B. Internal

surfaces caused by fracture are labelled S such that the intersection
2

of S and S2 is a null set and S = SI + S2* Furthermore, the volume of --

the element is defined to be V which includes the volume of voids VK v

The scale of L is chosen so that its dimensions are small compared to

the dimensions of B, but at the same time, the dimensions of L are largeL enough to guarantee statistical homogeneity of the material

9..
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Fig.3 A Body with Damage (a) General Body,
(b) Local Element.
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inhomogeneities and defects in L even though the total surface area of

defects may be of the same order of magnitude as S1 [38]. Suppose

further that in the absence of defects or at constant damage state

the material behavior is linear thermoelastic, thus specifically

excluding the effects of crack face rubbing.

The following notation is adopted. Quantities without capitalized

subscripts denote pointwise quantities. Those with subscripts L denote

quantities which are averaged over the local element L. Finally, the C -

subscript E denotes linear thermoelastic properties.

r Review of Thermodynamic Constraints on Linear Thermoelastic Media

Under the above conditions the pointwise Helmholtz free energy per

*" unit mass h of the undamageu linear elastic medium may be expressed as a

second order expansion in terms of strain ij and temperature change AT ---.

as follows [40]:

h -u - Ts = h (Eij T)=
E i

A + B .E. + 1/2 C ijkl'ij'kl + DAT + Eij.ijAT + 1/2 FAT ()

where u and s are the internal energy and entropy per unit mass,

respectively, and A, B1 j, Cijkl, D, E.. and F are material parameters

which are independent of strain and temperature and AT = T-TR, where TR

is the reference temperature at which no deformation is observed at zero

load. In addition, we assume here that all motions produce small

deformations so that E.. is the infinitesimal strain tensor.

Furthermore, inertial effects are assumed to be negligible.

Pointwise conservation laws appropriate to the body are as

"-S3' follows:

1) conservation of linear momentum

*. 11II
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L" ,-.

J

0.. =0 (2)

where oicj is the work conjugate stress tensor to the strain tensor e.ij

and body forces are assumed to be negligible;

% 2) conservation of angular momentum (assuming body moments may be

neglected)

-. o~~ij j O i ;( ).....

3) balance of energy

pu- o.e.. + qj .= r (4)J 1 13 j,j

where p is the mass density, q. are the components of the heat flux

vector, and r is the heat source term; in addition, dots denote time

differentiation and, -a/ ax;

4) the second law of thermodynamics

ps -Dr+ >0 (5)
i iFurthermore -4

(ij U. + u.,i
"2 (iJ (6)"-'""

The above set of equations may be cast with appropriate boundary

S co conditions so that constraints imposed by the second law of -'

thermodynamics will result in [40]'

SsE = E -D-Ei ij (7)

T

ij E P = p (Bi+ Cijke~kt + Ej AT) (8)

1jj

where pBij are components of residual stresses at The reference
13

temperature at which T = 0,

' 12
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qi kigj + 0 ( !2-

i- -k -.-j (9

I'.m where

g"T (10)

Thermodynamic Constraints with Local Damage

Now consider the local element shown in Fig. 3b with traction

boundary conditions on the external surface S In- addition, the

interior of L is assumed to be composed entirely of linear elastic

material and voids. It is our aim to construct locally averaged field

equations which are similar in form to the pointwise field equations

: discussed above. In performing this averaging process the pointwise

Helmholtz free energy described in equation (1) will undergo a natural

modification to include the energy conversion due to crack formation.

In order to construct locally averaged equations first define the

locally averaged stress tensor:

ij L VL cy( dV

Integrating the balance of energy (4) over the local volume and dividing

through by the local volume results in

13
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p dV - LdV + Lf qJ,jdV f prdV (12)

IL VLf' VLJ f i L ~ V L
V V V V

L L L L

0 In order to simplify the above define the locally by averaged density pL

such that

PL VfpdV (13)

V L

Furthermore, define the local internal energy rate per unit mass fi such

- that

UL L L d (14)

which can be constructed as long as p 0.

Now consider the second term in equation (12). Recall that since

o.. is a symmetric tensor

oa C = G ij (ui,j .+ U. =y ' - (15)
iij 2 i i j ji ij i,j

Thus, using the divergence theorem gives

-dV = L. " dV = n ""dS + 1 fI j L n~dS
l '.. °ij ij VL f i u ' °31 1 V f iJ + 1 ./ oij u n d I (1 ), . .-j-

L-V L~ L S L• L  V L-V VIS2
L Lv 1 2

i i14
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where it is assumed that the stress tensor is negligible in the void

I iivolume V, and n. are the components of the unit outer normal vector to

the surface S = S + S
1 2*

Now define "

ULa L J iun'dS"-L V ij (17) "''

$2 i[! * . '"} .-

L Lf
S2

which is the time rate of change of surface energy release per unit

local volume due to cracking in L. Further, define
Vi

CL _ I u .n .dS (18)

L

so that under the assumption that all displacements are infinitesinal

,d for the case of either spacially uniform surface tractions or

IP applied displacements on the local element external surface S

= L., uL n dS (19)ij

L
S

1]

Thus, equation (16) becomes

,-i71 f-

1 ij PLUL+ L EL (20)

V

15 9.....
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Define also

2 /"fq .dV (21)q r - V q  .  dV"-,l ,

rL 1 f

VL

Substituting equations (14), (20), (21), and (22) into equation (12)
; i ~yields the ufollowing locally L averaged balance o~Lf energy:(2)iiii .--" """

L L PLL - L. YL. + L L (23)S ij j,

We now define the effective internal energy u L such that

UL  uL + uL  (24)

S .1

Substitution of (24) into (23) results in

PL U L L L . + q L . = PL rL
1
J '. J j (25)

which can be seen to be equivalent in form to energy balance law (4). _

16
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In order to construct a similar statement for entropy production

11 ~inequality (5), first multiply through by T and then integrate over the .-

local volume V and divide by this quantity to obtain
L

f v- psTdV -Lv- dV + -f T(-L) dV > 0 .(26)

L L VL

Now define

TL VJfd (27)

V VL

and

L p T V psf (28)
V
L

A so that substitution of definitions (22), (27) and (28) into (26) will

result in

~q.
FL L L L P~L +V L T(-') T V (29)

VL

No oe that the last term in (2)may be written as follows Using the

Pr')ductri :

r~ ~ fT),dv qf jdVvhf~ d (30)
V TV V

L. L 1

17
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Thus, define .j

T q
q TLj VLJ T  dV (31)

VL2

Therefore, substituting definitions (21) and (31) into (30) and this

result into (29) gives, after dividing through by TL:

SL L L + (32)L OLL TL + (> 0

I We now assume that the local volume is small enough compared to B

that the standard procedure may be utilized to obtain the linear

- fconservation of momentum equations [38]

oL.. (33)

similar to pointwise equations (2), and the conservation of angular

momentum may also be obtained

. L..aij (34)
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similar to equations (3). Thus, it is assumed that no body moments are .

II introduced via material inhomogeneity or other sources.

Locally averaged field equations (25), (32),(33) and (314) have now

*been constructed which are similar to pointwise field equations (2) % .

through (5). On the basis of this similarity we now define the locally

averaged Helmoltz free energy [18, 38i1:

hL uL T S LU T ~ =hEL+ UC (35)

where it can be seen from definitions (114) and (28) that h ELis the

locally averaged elastic Helmholtz free energy for which residual

damage is assumed to be small ,given by equation (1) to be

h 2 (6
h f (A /AB V+-- 1 cj kt£ Et +DAT+E.£.AT+1 FAT) dV, (3) * v
EL V ij 3ji

L 2
VL

Utilizing definitions (18) and (27) we may further define

AL V ' dV (37)
LJ

fV

B C C1 f B.. .. dV , no sum onij (38) .774
L ij EL j ij Uj

VL

L

V 19
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D I __ DATdV (40)

E1 L ELTTOV and sum on i,j, and (1

L.. Lj VT L'

FE 1 If FT'dV .(42)

VL TL2 JVL
Note that when the actual strain state c. is spatially invariable and

S2 = 0, the above equations result in B* =B, C =C and E
21]j ij Lijkl ijkl i

E = Substituting definitions (37) through (J42) into local elastic

free energy equation (36) results in

hE AL+BL E +. 2 C + DT +E E T 1 2
2 L E:L L L L L. L.. L +-FT (43)a.r Lijkl ij kl 1J ij 2 L LL

The similarity between the pointwise and local field equations

leads to the conclusikn that

~hL
s (44)

C

P hL (B +E T)+ (U 45)
'LBLL L L..L La

9E: L.. Lj~.k L..

and

2

q= 9k 0 (gL.1) (46)

where

k L g~d nosukodv (7
13 ~ V. nosm nij,(7

f
VL

P 20
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and

L ET
Sj TLj J (48)..

Note the similarity between equations (7) through (10) and (44) through

(48), respectively.

Equations (45) will serve as the basis for thermomechanical

stress-strain relations in damaged fibrous composites. All damage will

be reflected through the local energy due to cracking uL. This term

will be modelled with internal state variables characterizing the

:" various damage modes.

Description of the Internal State

In order to describe the internal state, we first consider the

kinematics of a typical point 0 with neighboring points A and B, as

V "shown in Fig. 4. Before deformation lines OA and OB are orthogonal, as

shown in (a). After deformation we imagine that lines joining 0',A',

and B' are as shown in (b), and just at the instant that deformation is

completed, a crack forms normal to the plane of AOB through point 0', as

" . shown in (c). Furthermore, point 0' becomes two material points 0' and

0" on opposite crack faces and points A' and B' deform further to points

A" and B". It is assumed that all displacements, including crack

opening, are infinitesimal, so that an observer at an appropriate

21
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(a)

B B

o At

Crack Faces

(c)

Fig. 4. Kinematics of the Damage Process

a) Point "0" Prior to Deformation,

b) Point "0" after Deformation and Prior to Fracture Process,

c) Point "0" after Fracture. ,-
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observation distance from point 0 "sees" only the deformation A" 0' B".

The strain associated with this deformation is appropriately called an

observable state variable. However, the strain of interest is

associated with A"O"B". Therefore, it is essential to construct an

Minternal state variable which will relate these two strain descriptions.

We therefore construct the vectors u connecting 0' and 0" and n.

* describing the normal to the crack face at 0', as shown in Fig. 5. It

should be noted that u can be used to construct a pseudo-strain

representing the difference in rotation and extension of lines A0'B"

and A"O!"B".

Now recall that the energy released during cracking is given by

equation (17). Since the body is elastic, we assume that this process

is reversible and that tractions TC can be applied at point 0' whichixi

-S will close the crack:

." T1 u dS (49)i U~L LL S i,

S2

Using Cauchy's formula the above can be placed in a form similar to

(17):

c _u
c n dS , (50)"UL i3 ijd

,LVL S2

where the superscripts denote quantities associated with the actual

crack geometry. Although these quantities do not necessarily coincide 4

with the terms in the integrand of (17), their surface integration will

II 23
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Fig. 5. Description of the Internal State at Point 0'. -1
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result in precisely the same energy release rate 6c due to the

reversibility of the process.

Guided by the fact that uc and nc describe the kinematics of the

cracking process at point 0, we now define the following second order ,

tensor valued internal state variable:

-C 

-

CAij 5u 
A '';._

Note that when the crack normal is time independent the above may be

time differentiated to give'bj:

uL =a.. j i.. dS (52)

fS2

Note that the components of u and n can be recovered from (51)

by using single row and column multiplication of aij:

2 c c
u .U u. n. (no sum on i),u i  j(53)C

2 c u
n =u n U (no sum on j). (54)

Therefore, the normal and shear modes of crack displacement can be

recovered from a...

Now suppose that u is subdivided into integrals over a finite
L

number of internal surface areas S of fundamentally different nature:
2

- N c n dS (55)
• - ,: 0 (55)," " -tl" I L 1].. " -'

'25
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', . such that .

N S = S (56)

Il 2 2

and the integer N represents the number of damage modes, to be described

below.

Now define the locally averaged internal state variable az for

ij

the n th damage mode as follows:

. _

TI i c I f dS
Su n dS = .

L. JV iJ (57)
VL L S

*S

Furthermore, if we define the average crack closure stress L

for then th damage mode such that

* ] 1 cT dS , no sum on i, j i,.'- :] ij ij ij '(58) '''''

it follows that, from (55), (57) and (58) -
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u L  a (59)
1J ii -j.

- where we have assumed that repeated indices n imply summation over the %.

S"range N. It is clear from the above discussion that the value of N must

. .be sufficiently large to recover the essential physics of the damage

mapping from j to aL.. is unique, the inverse should also be true in

. an approximate sense. Note also that both u? and nc inequations (57)
1 3

[ will be affected by crack interaction in the local volume.

Now consider equation (59) in further detail. The kinetic ..

quantities oL  may be interpreted as generalized forces which are

ij
energy conjugates to the kinematic strain-like internal state variables

aL.
iji

We infer from this that there exists a constitutive relation between

~these variables of the form

L ij L i (Lkl' L  Lk1

Therefore, substituting (60) into (59) and integrating in time

Iwill give

Ct1) uL (t)dt = u ,Lkl (tl1' L (t), Lc, (tl)) , (61)L L L LkI  1. .-.
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It is now proposed that u be expanded in a Taylor series which is

second order in each of the arguments in equation (61) as follows:

*~~~~ .u L1  T+ I ijl L 4k + Oijk L.. L ATL

mn il , ijkl L.. Lkl L .

LJ L i L 1i L 2 Lj m L..

ijklmnp L. Llmnp

+R EL U (A AT +S N 2: n
kjln , L L + - L L ijkl L LkjT

kjlm mn 2nnln j k n k

+E1 Otr 2 1L 11 O
ij Lmn L +Ujjklmn L..~k L L Lp

L~ Lk L L2C AT~.A

ijklmnq L1j kCL n jkl Mi Lx ~kl L

where k] mn L TL)

depends q exLtl onl damend Ti (62)

weeall terms are at least linear in a due to the fact that 9-Iij depeds xpliitl on amae, ad A T - T . Thus, substituting (243)

and (62) into equations (245) and neglecting higher order terms yields:

Lij BjEL.. =B LE CLik 'LTi lLk
L 1 j L1 kjll~ Ii

Ti r)

+ MT, E cc~ +N. ~T(3
ijklrn 'kl L ijkl OLkl AL (3

mn.

* Equations (63) may be written in the following convenient form

R Tk
11 L +ck (L~ 1 (64)

28



where

R _ f
L-. B + I cA (65) .A- °Li Lij ijkl Lkli. ..

is the residual stress in the absence of strain and temperature change,

which may be induced by damage;

C C +M M(6) . -

ijkl ijkl ijklmn mn

Pr-

is called the effective modulus tensor, which is degraded due to damage;

and

L CL ATL) --

k C (EL (67)i. ~ L Lij k l  ij - ijkl k  ii] . . . . . .

Ik1

is called the thermal strain, which also may be affected by damage.

Note that the only second order terms are due to damage induced

P stiffness reduction and thermal strains.

Equations (64) through (67) are the completed description of the

stress-strain relationship. Note that these equations reduce to the

standard linear thermoelastic equations in the absence of damage (ai

=0). Furtherrore, it is notable that these equations reduce to

Kachanov's model [22] in uniaxial form.

29



Damage Growth Laws

The model is completed with the construction of the damage growth

laws, which may be described in the following differential equation

form:

-. T T ) (68)
L. Lkl L Lkl

-J

or equivalently, when) are analytic in time,
ij

t

1(t j (t),TL(t), Lkl (t))dt (69)aLr (t ) =ij( -kl L kl.. ..

where the dot denotes time differentiation. Although the above

* equations are called "growth" laws they have the more general capability

to model such phenomena as healing.

The precise nature of equations (69) is determinable only through

a concise experimental program coupled with an understanding of the

micromechanics of the medium. Indeed, these growth laws constitute the

single most complex link in the model development.

In this section an example of a first generation growth law will

* be constructed for predicting damage up to the CDS in continuous fiber

composites. Experimental evidence suggests that matrix cracks

predominate prior to development of the CDS E4-6]. Guided by this

observation, a single damage tensor is considered herein: (X

representing matrix cracking.

In order to completely define equations (69), it is necessary to

construct indicators of both the magnitude and direction of the damage

tensor. In this first generation model it is assumed that the direction

S 30
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of the damage tensor is known a priori and does not vary as the damage

state changes. Specifically, in a typical laminate, it is assumed that,

in accordance with equation (57), the locally averaged resultants of u

C :nd n are normal to the fiber direction in each ply, as shown in Fig. -

6. Thus, for example, in a 0' ply aIl* 0, and all other components"22 "'"''

are zero, whereas in a 900 ply, aI : 0 and all other components are

zero in global coordinates.

Under the above assumptions, the magnitude of the damage tensor is

the sole repository for history dependence in each ply. Experimental

* . evidence indicates that for matrix cracking in randomly oriented

* 1particulate composites [41] and matrix cracks in fibrous composites

[20,21] the growth of damage surface area is related to the energy

release rate G by

da n
da G (70)

dN -.

where N represents the number of cycles in a fatigue test, and n is some

material parameter. Guided by these results, a similar law is

constructed here. To accomplish this, first multiply both sides of (70) by

dN/dt to obtain for the 900 ply, for example,

I d N k. =GI dN (1

- -I>>

dt ,22 dtdt
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Assuming that the energy release rate is essentially mode I and

*. therefore depends on the maximum normal strain, the damage growth law

for transverse cracking is thus hypothesized to be of the form

1n n if C < < E , and
=K in max

" " 2" a C dtmima ,. [
[.'. L22 nmax nmin/ .., .

•1 =0 if C < C or E > (72

L c n n ma n n x,(72).- L~~ ~~22 mnmx ...'

where n is the local normal strain component which is normal to the

fibers. Furthermore, e is the value of n at which transverse
~n n

cracking initiates, and E is the corresponding value at which
nmax

" transverse cracking saturates. K and n are experimentally determined

material parameters which may depend on the initial damage state or on

, history dependent damage such as matrix microvoids. The use of E n

presupposes that the fracture mode is predominantly mode I in nature,

which may not be the case in some complex layups. In these cases, mode

II and mode III terms may be required. Note that all components of L

are zero except , which is nonzero in the local coordinate system

22
* wherein the fibers are aligned parallel to the x1 axis.

S'The time derivative of c reflects the time independent nature of

the damage mode, and actually represents a departure from the form of

equations (69) in that explicit strain rate dependence is now reflected

0 in the growth law. However, damage growth law (73) need not satisfy the

principal of equipresence [42] since it is not an equation of state

[431.
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Futhermore, a study of thermodynamic constraints with linear strain rate independence

in equations (69) will indicate that equations (44) through (46) remain valid [44,45].

Fig. 7 shows a typical growth history for a specimen subjected to monotonically

increasing deformation u(L).

* Equation (72) completes the description of the damage model. Integration of

these equations in time will lead to current values of the damage tensor which is

input to constitutive equations (64) through (67). It should be pointed out, however,

" that these equations may be extremely nonlinear and as such must in many cases be

integrated numerically with stiff integration schemes [48].

34
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Fig. 7. Typical Growth of Damage in a Specimen with Matrix Cracks.
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CONCLUSION

Stres-strain relations have been developed herein which account

for various forms of damage in continuous fiber composites. . .*?

- Furthermore, a damage growth law has been proposed for matrix cracking

in fibrous composites. The model developed herein is thus a complete

*1 description necessary to characterize the thermomechanical constitution

of a fibrous composite (excluding failure). However, the actual use of

this model is complicated by the requirement for numerous experimentally

determined quanitites, as well as the necessity to determine locally

based observable state variables by analytic methods. The construction

of these parameters constitutes an entire separate research effort which

is considered in Part II.
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A DAMAGE MODEL FOR CONTINUOUS FIBER COMPOSITES

PART II: MODEL APPLICATIONS E
by

,..-x..;

S.E. Groves

D.H. Allen

C.E. Harris

and

R.A. Schapery

ABSTRACT

A continuum mechanics approach is utilized herein to develop a

model for predicting the thermomechanical constitution of continuous

fiber composites subjected to both monotonic and cyclic fatigue loading.

In this model the damage is characterized by a set of second order

tensor valued internal state variables representing locally averaged

measures of specific damage states such as matrix cracks, fiber-matrix

debonding, interlaminar cracking, or any other damage state. Locally

averaged history dependent constitutive equations are posed utilizing

constraints imposed by thermodynamics with internal state variables.

In Part I the thermodynamics with internal state variables was

constructed. It was shown that suitable definitions of the locally

averaged field variables led to equivalent thermodynamic constraints on

a scale assumed to be large compared to the scale of the damage. Based

on this result the Helmholtz free energy was expanded in a Taylor series

in terms of strain, temperature, and damage to obtain the stress-strain

relations for composites with internal state variables representing

damage. Finally, an internal state variable growth law was proposed for

matrix cracking.

D- _ %" -?' ""'" " " " ." * "



In this paper, the three dimensional tensor equations from Part I

[] are simplified using symmetry constraints. After introducing

engineering notation and expressing the constitutive equations in the V-

* -" standard laminate coordinate system, a specialized constitutive model is -,

* developed for the case of matrix cracks only. The potential of the

£ model to predict degraded or effective stiffness moduli is demonstrated.'"

by solving the problem of transverse matrix cracks in the 900 layer of .'.. -

[0/90Js and [0/90 3]s laminates. .

-3To solve the example problems, the undamaged moduli are .-.. '

determined from experimental data. The damage tensor is determined

analytically from a finite element analysis assuming a variety of matrix

crack spacings in the 900 layers. The internal state variable for

transverse matrix cracking is related to the strain energy release rate

due to cracking by utilizing linear elastic fracture mechanics. The

values of effective (damage degraded) stiffnesses predicted by the

constitutive model are in close agreement with both experimental and

* finite element results. The close agreement obtained in these example

problems, while limited to transverse matrix cracks only, demonstrates

the potential of the constitutive model to predict degraded stiffnesses.

INTRODUCTION

In Part I [1] it was hypothesized that damage can be modeled in

continuous fiber composites by a set of internal state variables which

represent locally averaged measures of matrix cracking, interlaminar

dela~ination, and other damage mechanisms on a scale which is assumed to

be small compared to the scale of the boundary value problem of

2

j "



• "" interest. Continuum mechanics with internal state variables [] was ':..

then utilized to construct stress-strain relations in which all

components of the degraded modulus tensor can be determined for a given

. damage state.

The purpose of this paper (Part II) is to demonstrate how the

model may be utilized to predict the stiffness of laminates which are

subjected to known damage states. This procedure is illustrated via

specific examples in which there is a single damage mode consisting of

transverse matrix cracking. It is shown that single lamina properties

* "in the presence of damage can be utilized as given properties to obtain

favorable comparisons to both experimental and finite element results

for specific laminates.

. .The model application is accomplished by first imposing symmetry

*. constraints, performing the laminate integration, and finally reducing

to generalized plane stress.

SIMPLIFICATION OF THE MODEL

We now consider the stress-strain relation described in equations

(64) through (67) of Part I (see Appendix A). For the examples to be

considered herein, it is assumed that all residual stress components are

R
zero (0 =0), and that there are no thermal transients (AT 0).

*L

Reduction to Single-Index Notation

-" By incorporating the symmetry of the stress and strain tensors,

the quadratic dependence of the Helmholtz free energy on strain, and the

*3



L

Voigt single index notation, [2] the constitutive equations reduce to

(see appendix A)

where 1: c I1'

i:: 1:. , : c + M .  Ot (2)-. -'
CL .ij ij 1jmn mn -[.''

In equations (1) and (2) the subscript L represents quantities which are

locally averaged at the lamina level. The subscripts i and j range from

one to six, the subscripts m and n ranges from 1 to 3, and the

superscript n ranges from 1 to N, the number of damage modes.

At this point no further reductions can be made to the number of

* .unknown constants in equation (2) without specifying the specific

damage modes and material symmetry.

Application to Matrix Cracking

As discussed in the introduction, the potential of the

- "constitutive model will be demonstrated by considering the case of

matrix cracking in continuous fiber composites. An example of this

" damage state is shown in Fig. 1. In order to construct the proposed

* constitutive model for this system we first examine the response of a

single ply subjected to transverse matrix cracking as shown in Fig. 2.

. Assuming that the crack geometry is symmetric about normals to each of

the ply coordinates, the internal state variable associated with matrix

cracking in local ply coordinates is represented by

4
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a --I I 0 0 0
ij1 0

S01 0

This implies that the damage in a single ply is defined by the direction

of vectors nc and uic and the magnitude Iall (see Fig. 2). It will be
z

shown in a later section that the magnitude of aL is related to the

surface area of matrix cracks per unit volume in a ply.

Note that a second order tensor representation of the internal

state variable is insufficient if the crack orientation within the ply

is time dependent. In this case a higher order tensor is required.

However, since the crack is matrix dominated and constrained by fibers,

S"rotation is assumed to be negligible and the second order tensorial

representation is considered adequate in this example.

For the single damage mode of matrix cracking described in Fig. 1,

equation (2) reduces to

"c CL.. + ijmm amn' (4)
1j 1]

where a represents matrix cracking and the atove properties are
Lmn

constructed in ply coordinates. Since the only non-zero component of

a is 1 equation (4) reduces to
* -Lmn 22

C' =C + M (
L.. L.. ij22 a22

1 j 11

" where M represent the non-zero components of M associated with
"lj22 ijkl

matrix cracking. At this point MQ has been reduced to 21 unknown* 1. j22 hsbe eue o2 nnw

coefficients in equation (5).

6o . . -
* i-* s.
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Material symmetries may now be utilized to further simplify the p

constitutive equations. The material in question is assumed to be

* initially transversely isotropic in the undamaged state on the local

scale, where the plane of isotropy is the x2 - x3 plane shown in figure

2. In the undamaged state the effective modulus tensor C' isLijkl ''.--.

* equivalent to the elastic transversely isotropic ply properties given by

CF C C C 0 0 0 FL:.:

UL CL CL CL 0 0 0 CL

i LI LI L L L-"°''

2 12 22 23 2

' L 3  CL1 2  CL23  CL2 2  0 0 0 L "'

5 0 0 0 0 0 0 C (6)
L44
°L5I C L5" ---L ..-"..

0 0 0 0 0 0 0 L
L 5 L

1.- 6 - - .. .. .

It can be shown using irreducible integrity bases [4,5,8] that

with the inclusion of the damage tensor for tr nsverse cracking the

effective modulus tensor becomes orthotropic. Therefore, the damage ... *.

tensor ML is an orthotropic tensor containing 9 unknown constants.Lij 22 .. "

Thus, the complete constitutive equation (5) (assuming the damage growth

law aL2 is known) requires the determination of independent material

constants for the undamaged modulus tensor C and 9 independent
L..1 1]

constants for the damage tensor, MiL '

ij22
For relatively thin laminates it is useful to apply the conditions

of generalized plane stress where the out-of-plane shear stresses 4 and

05 are neglected. Applying these conditions to equation (1) and using

matrix notation results in• b'

.-8" -1. ........ . ..--.. _ ..8. . . . ...... ..- . .. . . --



L1

C C C 0 1 M1 M- 0 -
L 1 12 12 1122 1222 1322 L

L C i 1 0 1

L2 22 23 1 1222 2222 2322 L (7)

L 1 1 1
C C C 0 22 1 i i 0

3 12 23 22 13

G 0 0 0 CL 0 0 0 M~2
O- -L6-6662

where for generalized plane stress conditions there are 12 unknown

material constants in equation (7).

Laminate Equations

To utilize single lamina equations to characterize the response of

multilayered laminates, it is necessary to globally average the local

ply constitutive equations. This is accomplished herein by imposing the

Kirchhoff hypothesis for thin plates. This procedure is very similar to

the method used in Jones [3]. However, generalized plane strain

conditions are imposed rather than plane strain because this is

consistent with the stress state in equation (7) (A detailed description ,.

of the global averaging is given in appendix B). The resulting

equations are as follows:

* 4

{N} = [A] [C° I (8)

or

= [A- {N} (9)

where

i 'k= (CL.. )k k

94



and [c: contains the laminate midplane strains where k specifies the

ply and t is the ply thickness.

DEPENDEN4CE OF THE FREE ENERGY ON CRACK SURFACE AREA

It was previously shown in Part 1 [ll that the free energy, UL was

first order in the internal state variables, a . Therefore, in
Lij

general

Ti-
i -° " ,1.

UL fiij L TL) 1L..
k1

Iwhere f.. is a tensor associated with each specific mode of damage, n

Therefore, for the "fixed grip" condition (E constants) and
L.j

1>constant temperature conditions, the free energy is a linear function of

the internal state variables.

The free energy, u, depends on the energy released during

cracking as well as the total surface area of cracks in the local

volume. For an elastic material undergoing stable self-similar crack

growth, the available energy is related to the energy required for crack

extension by [6,7]

U 1 U; S (2
L P-- L 2

LL1

where G is the local volume averaged strain energy release rate during

c crack extension, and S is the total surface area of matrix cracks.

Also, it has been previously shown [1] that the local energy is related

to the total Tn)rgy by

10
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The total energy released during the fracture process is obtained by

substituting equation (13) into equation (12) and integrating in time.

This results in_ e7:::::

U G L S dt' (14)

L JL 2
0

where t is the time of interest, t' is a dummy variable of integration,

and S is a time dependent geometric quantity. It should be noted that
2

GL may be time dependent if, for example, cracks propagate through

heterogeneous zones such as resin rich regions during the damage

4 - process.

Since the body is assumed to be elastic at a constant damage

state, the strain energy release rate, GL, may be assumed to be rate

independent. Therefore, equation (14) becomes

s2 (t)

SCUL(t) =f GL(S2)ds = g(S2)

" $2( )

where it is apparent that the total energy is a function of surface area

only.

It therefore follows from equations (11), (13) and (15) that for

the case of transverse matrix cracking*1 .'° - ,.

c1 1

, U1 = I g(S2) = f2 2 ( LkI TL)oL 22 (16)

Thus, finally

I g(S 2 )
-f '2= g 'S ) 2 

( 1 7 )

-V f

c c22

".-, I I -' 11
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i*" The precise nature of the function g' is determined either analytically *-. %

(using a finite element solution) or experimentally.

From equations (17) and (15), it is seen that the internal state

variable depends on the strain energy release rate, GL. For the "fixed

grip" condition, the strain energy release rate is given by [7]

G 1dU , (18)
L

B da

where B is the crack depth, and UT is the elastic strain energy. For a

UTC d dV ,(19)

V 0
where and e are the uniaxial stress and strain states,

respectively, and V is the volume of interest. For a linear elastic

material, the term in the brackets of equation (19) can be integrated

and equation (19) becomes

U T 1  E ] dV (20)

where E is the laminate stiffness (A 1 1 /t) in the x-axis direction.

For the uniaxial fixed grip condition, 1 does not vary over the

volume. Therefore, equation (20) becomes

U =1 V 12 (21)

2

Finally, substituting equation (21) into equation (18) and recalling

that ell is constant for the "fixed grip" condition, the following

expression for strain energy release rate is obtained:

V2  E (2GL I V 11 (22

12

--. ,---..-
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, This result implies that only the laminate modulus, Ell changes with the

i formation of new crack surfaces.

The above result may be considered intuitively obvious because F 11

.. is defined as the load in the x -direction divided by the associated,%

displacement in the xfdirection. Since the displacement is held

constant, the load will decrease as crack extension occurs and the

* structure becomes more compliant. This can be shown to be analogous to

171

2G = DC (23)
L 2B MA-'

"-, where C is the specimen compliance (W/E )"

As an example, consider a [0/90] laminate with matrix cracking in
5

the 90* plies only. The average stiffness is given by

E = /2 ,(24)E (E0 + E90) /2

where E and E are the moduli in the global x I direction (00 fiber
0 901

orientation) of the 00 and 900 plies, respectively. Assuming that no

cracks form in the outer 00 plies, equation (22) becomes

2 E9
"G I V 90 (25)

'-: t ":' 4B a, . ,,

This result implies that only changes in the modulus of the constrained

900 plies, where matrix cracks are assumed to occur, effect the value of

the strain energy release rate for increasing crack formation.

Determination of Damage Modulus Tensor

The material constraints used in M!.2 2  can be determined using

equation (5)

I C CM I - L.. (26)
ij22 = ij ]-

L 

.1

-. . -.3
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provided that , C , and I are known. In reality it is C'
proidd tatCL., N ,an car C

that one seeks to predict; however, it is possible to analytically or

experimentally determine CL for prescribed values of aL22 . The terms %
pil2

in C are the orthotropic material properties determined .
L..

experimentally from tests conducted on undamaged composite lamina.

In order to determine the terms in CL .. , it is necessary to

determine the effective orthotropic properties of a single ply for a
I

given value of aL The effective orthotropic properties due to
L22

matrix cracking are determined by modeling the crack-s as internal

boundaries and solving the resultant boundary value problem using a

. finite element continuum model. Alternatively, CL may be determined
L ij

experimentally where methods exist to determine appropriate stiffness

components.

RESULTS

This section presents the results obtained from the finite element

continuum model which was used to predict the damage modulus tensor and

the globally averaged laminate equations relating stress and strain.

These results demonstrate the ability of the model to predict all14

components of the effective stiffness due to matrix cracking for a

[0,90 1 laminate. The experimental data used in this analysis, shown

in [,1blc 1, were obtained from reference 9.

The first series of tests were conducted to determine the strain

energy release rate and the damage modulus tensor M'Q22 for [0,90] s and

[90,90] laminates using the finite element continuum model with various
s

14
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Table 1. Undamaged ply properties for E-glass epoxy [9]

E 6.05 X 10 6 PS

E2 1.89 x 106 PSI

-. 
6

3 1.89 X 10 PSI

= V = = 0.30
) 1 2 = 1 3 = 2 3

G1 = 01 = 0.63 x106 PS

23 0,7269 x 106 PSI

cured ply thick ness 0.008 inches

I- J.%'

15



crack densities in the center 900 ply. The finite element mesh used for

the analysis is shown in Fig. 3. The effect of different constraining

layers on the strain energy release rates calculated from the finite

element results are shown in Fig. 4. Also shown in Fig. 4 is the

theoretical result for repeated cracks in an isotropic infinite

domain [10]. This result is intended only to verify the cubic nature of

the strain energy release rate calculated from the finite element model.

For the current state of model development, only the [0,90] s relation

for the energy release rate was used. It should be noted that, in

calculating the energy release rate, the derivative of the change in

stiffness with respect to crack length was approximated with a first

order finite difference relation.

The next step was to determine an approximate relation between the

strain energy release rate and the total crack length. A least squares

cubic fit of the curve for the [0,90] laminate, shown in Fig. 4 was

obtained and is given as follows:

2 3
G(a) - 3.88690 - 0.280162 a -44.11385 a + 69.22121 a3  (27)

where the nonlinear terms are believed to be caused by boundary effects

and crack interaction. Substituting equation (27) into equation (15)

results in an expression for the internal state variable as follows:

= 3.8869a 0.140081 a 2 14.70462 + 17.305303 a (28)

The values for the damage modulus tensor Mi can now be
1J22

determined from the finite element results for the [0,90] laminate. In

16
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order to evaluate the constants in M. a particular crack density is
ij22'

selected and the finite element results for this case are utilized in

equation (25). These results are then used as follows: 1) compare

damage model predictions for the axial stiffness loss in the [0,90]

laminate to the finite element results, and 2) compare the damage model

predictions for the axial stiffness loss in a [0,90 ] laminate to both
3 s

finite element predictions and experimental results.

The results for case one are shown in Fig. 5. It can be seen

that the damage model underpredicts the stiffness loss. This result is

expected since laminate analysis does not account for interlaminar

shearing which would effectively reduce the axial stiffness. -

Furthermore, the strain energy release rate predicted by the finite

element continuum model is conservative due to the inherent "over

stiffness" problems assrciated with the finite element model, especially

since constant strain triangular elements were incorporated. This same

argument will hold true when the finite element model results are

compared to experimental data.

The normalized axial stiffness results for case 2 ([O,90 ]S

laminate) are shown in Fig. 6. As discussed previously, the results

predicted from the damage model as well as finite elements underestimate

the stiffness loss in the laminate. Nevertheless the good comparison of

the damage model to the experimental results can only be encouraging

since the only experimental data used were the undamaged stiffness

properties. The inclusion of experimental data for the damaged

stiffness properties and a more refined energy release rate prediction

can only help decrease the current differences between model predictions ___

and experimental results. A phenomenological explanation for the

19
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underpredicted stiffness loss can be seen. If one examines a schematic

diagram of a typical saturation crack pattern for the [0,903] s laminate

[911 ] as shown in F*l,. 7a. It is observed that a network of branched

or curved cracks exist in addition to a more uniform spacing of

transverse cracks. This suggests that the surface area of transverse

matrix cracks may actually be greater than that assumed by the damage

model as shown in Fi,4. 7b. Since tKj internal state variable depends

directly on the surface area of cracks, one concludes that by allowing

'for the increased surface area due to branching or curvature then the

model results would be in better agreement with the experimental data. ]
. This suggests that it may be preferrable to obtain all material

parameters from experimental tests rather than finlte elument results.

In Fi.s , the remaining components of the effective modulusI tensor are predicted using the laminate equations. It can be seen from

the figure that the moduli in the y and z directions do not vary

significantly for transverse matrix cracking. However, it can be seen

that the Poisson's ratios vxy and v as well as the shear modulus

G vary significantly. Also shown in Fig. 8 are results obtainedxy'

from the finite element continuum model for v xz The good agreement I
demonstrated here supports the ability of the model to predict all

components of the effective modulus tensor.

CONCLUSION

In part I constitutive relations were developed to account for

'arious forms of daarelg in continuous fiber composites by utilizing the

* concept of internal state variables. These constitutive equations have 1

been simplified to a usable form by imposing s3ymmetry constriints. The
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potential of the resulting constitutive model was demonstrated by

considering the case of matrix cracking only. Results were obtained for

[0,90] s and [0,903 1 laminates with matrix cracking in the 900 plies.
5 34

Although some of the material constants used to characterize the local . ..

ply constitutive equations were determined analytically, model results

compare favorable to experimental and finite element analyses for

specified values of crack densities. It is anticipated that when the

material constants used in the model are determined experimentally, the

results should be notably better due to the inability of the finite

element results to account for unusual crack geometry. Finally, the

model was shown to be capable of predicting all components of the

damage induced effective modulus tensor. However, the accuracy of this

capability remains to be verified through experimental correlation.

-i The objective of this research has been threefold: 1) to develop .

a model for predicting the constitutive behavior of a laminate given the

mode and extent of damage, 2) to develop growth laws for each mode and

.M the extent of damage, and 3) to incorporate both 1) and 2) into a usable

form. Although the model has been demonstrated for given states of

matrix cracking, parts 2) and 3) require further research and are indeed

the most difficult link in the model development since they will require

extensive correlation with experiment as well as finite element

analysis.
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Appendix A: Application of Symmetry Constraints

* The damage-dependent constitutive model (equations (641) through

* (67) of Part 1 [1]) is defined as follows:

aL R (cT C
L.] iLj +C ijk 1L k1l k

LL

ij

Lijk

~ I.I Ll loal tran tnso
a. PL (BL + Ikla (2a)

EResidual stress in the absence of strain and temperature

change

- CLL (CL +Mjk1 T1 (3a)
Lijkl PL L jkl +Mikm 'Lmn

E effective modulus tensor

C E undamaged modulus tensor
* . Lijkl

cl-I- AT) (4a)k1 P L . ijkl aki L

thermal strain tensor

ILI

a 3 internal state variable for damage modes
k1
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ATL change in temperature

dLJ T ijkl' Mijklmn, EL &N ijkl ar

tensorial material constants as required by the Taylor Series expansion.

For demonstration purposes, the residual stress terms are

neglected and isothermal behavior is imposed on equations (1a) through

('4a), yielding

CL (5a) 71
ij ijkl k1

where the effective modulus tensor is given by

C =p (C +. c ).(6a)

L.. L L ijklmn 'Lijkl +MImn

NoetatMT i ithodr esr ih79 oficet frec
~ijklmn

value of n. It is assum'ed here that the constitutive equations given by

(5a) are statistically homogeneous. Therefore, the conditions of stress K
* and strain symmetry can be applied to equations (5a) and (6a) to obtain

* CijL j CLikl ij~.kl =Cijlk (a

* . Using equations (6a) and (7(a) it can be shown that

M M. n T1 n 8a
ijklmn jiklmn' ijklmn ijlkmn (a

* Using the Helmholtz free energy and the quadratic dependence of the . **.

effective modulus tensor on stra3in, it can be shown that

CLC (9a)
L L

ijkl kil
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Substitution of equation (6a) into (9a) will result in

M' M 1a
ijklmn klijmn(la

The above symmetry constraints reduce the number of coefficients to 189

terms in equation (10a) for each value of n.It is most convenient at

this point to reindex the constitutive tensors using the Volgt notation

[2] where

0 0 0 0 014 =1 023 = 32

02 0 0 =0 = (1Ma)
2 22 5 =13 = 31

03 =33 06 =012 =0'21

and

=s = 2 F3 =2 c3
114 23 3

E:2 E 22 C 5 =2 1= 2E3 (12a)

S 3 C=C e 22 e2
3 33 6 12 21

Using the contracted notation, equations (5a) and (6a) can be written asi*.a =C e (13a)
where i and j range from 1ito 6 and

Ti
C C M a (14a)
L~j CL.. ijmn mn

Note that m and n range from i to 3 and r~ranges from i to N, where N is

I the number of damage modes.

30



Appendix B

The valuVS Of generalized plane strain are given by

K

ex eo(ib)

z z zE: 0 K
S SXxy xy xy

where the superscript "o" denotes the midsurface strains and the "-

matrix denotes the midsurface curvatures. Under the condition of_.-

. generalized plane strain there is no warping allowed out-of-plane, which

implies, that Kz 0. Thus the generalized plane strain equation

becomes

x x x

y y y
+ z

z z

E 
E 

K

It is now assumed that no moments or curvatures are imposed and

that all laminates studied are symmetric. Therefore, in order to

determine the resultant forces, it is necessary only to integrate the

given stress state as specified in equation (7) over the laminate

thickness to obtain

L3
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Ny 0 y

0z  dz (3b)

N -t/2
ih.xy /2 x

where t is the total thickness of the laminate.

Substituting equations (13a) and (2b) into (3b) for the case where

there are no rotations results in

t/2

{N} [C] {Eo} dz , (4b)

-t /2

where {N} denotes the force resultants, [C'] is the transformed

effective stiffness matrix, and {e0 } represent the mid-surface strains.

Note that since transverse cracks go completely through the thickness of

the cracked plies the stiffness is assumed to be spacially constant

through the thickness. Therefore, equation (4b) can be written as

N _ Zkl) {o} (5b)kN} -- Z CL] k  (Zk  Z-

k=l

where k specifies the ply and Z - Z is the thickness of each ply.
k k-1

One can define

n
Ai =)k (Zk Zkl) (6b)

k ij-
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where Aij represents the globally averaged stiffness matrix. Thus the

globally averaged constitutive equations become

{NJ = [A] {e}. (7b)

- -. •.,

Experimental testing is often conducted on uniaxial testing

machines in which the applied force resultants are input and the strains -

are experimentally determined output. Therefore, at times, it is more

convenient to express the strains in terms of the applied force

resultants as follows,
L -I

{E0 ) = [A ] I . (8b)
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